

A CORUÑA | 2016 | OCTOBER | 12th - 14th

II CONGRESO INTERNACIONAL de SEGURIDAD INDUSTRIAL en PUERTOS II INTERNATIONAL CONGRESS of SAFETY in PORTS

II CONGRESO INTERNACIONAL de SEGURIDAD INDUSTRIAL en PUERIOS. II INTERNATIONAL CONGRESS OF SAFETY IN PORTS

P<u>RESENTACIÓN - INT</u>RODUCTION

Henry Persson

- SP Technical Research Institute of Sweden, Fire Research
- 37 years of experience from research and testing related to fire brigades and industrial fire protection.
- Main expertice in fire extinguishing media and fire fighting tactics
- e.g. Tank fire fighting
- Silo fire fighting

Fire safety aspects during storage and handling of solid biofuels

Henry Persson, SP Safety

More and larger storage facilities

- Waste Directive (2008/98/EC) seeks in particular to prevent waste generation and to promote reuse and recycling of waste.
- Decreased use of fossil fuels → use of biofuels/waste increases

Supplied energy in Sweden 1971-2013 Windkraft Vattenkraft Primär värme Kärmbeänsie Natur- och stadsgas Råolja och oljeprodukter Biofuel Biofuel

Supplied energy in for district heating in Sweden 1971-2013

Handling and storage of waste

Fuel storage problems in focus

- ➤ Self-heating properties and risk for spontaneous ignition
- Explosions, fire development and risk for escalation
- > Fire detection techniques
- > Fire extinguishment tactics
- > Emissions to air and water

> Improved guidelines

What causes self-heating?

- Micro biological activity
- Physical processes
- Oxidation

- Most common test for self-heating
- Material exposed to hot air in a heating chamber at various temperatures
- > High test temperature, many tests
- > Results: A) Sub-critical, B) Critical C) Supercritical

Isothermal calorimetry

~---

- Measures heat generation (e.g. mW/g)
- > Tests at normal storage temperatures

SP Technical Research Institute of Sweden

Isothermal calorimetry – Example of results

Wood pellets

Batch no.	Composition	Comment	HRR _{max} (mW/g)
	67 % spruce / 33 % fresh pine + some	Produced for 1 m ³ scale tests	, <i>y</i>
10.2	additional matured pine		1.37
9	40 % Pine / 60 % Spruce	-	0.91
6	80 % Spruce / 20 % Pine	-	0.77
12	50 % Pine / 50 % Spruce	-	0.69
5.2	100 % Pine	Produced for 1 m ³ scale tests	0.69
27	95 % Pine	5 % spruce bark as anti-ox.	0.38
25	100 % Pine	with anti-ox. PG	0.37
10	60 % Pine / 40 % Spruce	-	0.36
18	20 % Pine / 80 % Spruce	-	0.32
5	100 % Pine	-	0.29
14	100 % Pine	Lipid-free sawdust	0.26
23	100 % Pine	Ref. for anti-ox. pellets	0.23
20	100 % Pine	Torrefied	0.18
16	100 % Pine		0.16
29	Final flat storage trial in Denmark	Sampling right after production	0.16
28	Final flat storage trial in Denmark	1 week old at sampling	0.16
	50 %Vine pruning / 50 % vine		
13	pomace		0.16
19	100 % Pine	Torrefied	0.15
15	100 % Pine		0.14
7	100 % Straw	Straight from the production	0.14
8	100 % Spruce		0.14
1	100 % Pine		0.11
26	75 % Spruce / 25 % fir + larch	From flat storage experiment	0.11
24	100 % Pine	With anti-ox. TBHQ	0.09
17	100 % Straw	From flat storage experiment	0.09
2	100 % Spruce	-	0.09
21	60 % Pine / 40 % Spruce	Sampled from fire	0.06
11	100 % Eucalyptus	Stored 1 year	0.05
22	100 % Eucalyptus	Fresh	0.05

1,37 mW/g

0,38 mW/g

0,05 mW/g

Silo storage - fires often results in total loss

Background in 2003

- > Fire & Rescue Services limited experience
- > Limited research available
- Very few guidelines
- ➤ No design data

Silo fire tests in laboratory scale

- Gas concentrations in silo headspace
- Extingusihing tests by injection of inert gas at silo bottom

Successful experience from real silo fires

Wood pellets 2007 D=8 m, H=47 m

Coal 2009 D=10 m, H=13 m

Wood powder 2008 D=10 m, H=15 m

Experience on very large silos lacking!

Primary firefighting tactics

- Close openings and seal leakages to avoid access to oxygen.
- ➤ Injection of nitrogen at the silo bottom in gaseous form.
- The gas should be distributed over the silo cross section area.
- ➤ Design filling rate: 5-10 kg/m² h (cross section area) Total use: 5-15 kg/m³ (gross volume)
- ➤ Start the discharge only when the fire is under control.

Primary firefighting tactics

➤Do not open the silo!

 Significant risk for gas- and dust explosions and fire escalation

➤ Do not use water!

- Silos are not normally designed for the increased load.
- Swelling might cause hangings/bridging inside silo or even cause rupture och the construction

"Silo Fires - Fire extinguishing and preventive and preparatory measures"

Published by MSB (Swedish Civil Contingencies Agency)

Book available as pdf-file

Book and additional information at MSB web site (see links below)

https://www.msb.se/sv/Produkter--tjanster/Publikationer/Publikationer-fran-MSB/Silo-fires-fire-extinguishing-and-preventive-and-preparatory-measures/

https://msb.se/sv/Insats--beredskap/Brand--raddning/Brand-i-silo/

Fires in flat storage

- > 5000 ton of wood pellets
- > Fire caused by self-heating
- Rapid fire development due to dischage of pellet bulk

Fires in conveyor systems

Silo fire in Denmark, aug 2012 45 000 and 100 000 m³ silos involved

Fires in conveyor systems

ISO/TC238/WG7 – Safety of solid biofuels

Four standards under development

- ➤ISO 20023 Solid biofuels Safety of solid biofuel pellets Safe handling and storage of wood pellets in residential and other small-scale applications
- ➤ ISO 20024 Solid biofuels Safe handling and storage of solid biofuel pellets in commercial and industrial applications
- ► ISO 20048 Solid biofuels Determination of off-gassing and oxygen depletion
- **►ISO 20049 Solid biofuels Determination of self-heating**

ISO/TC300 – Solid Recovered Fuels

WG 1 Terminology and quality assurance (secretariat by BSI)

WG 2 Specification and classes (secretariat by SIS)

WG 3 Sampling and sample reduction (secretariat by NEN)

WG 4 Physical/Mechanical tests (secretariat by DIN)

WG 5 Chemical tests and determination of biomass content (secretariat by UNI)

WG 6 Safety of solid recovered fuels (secretariat by SIS)

Thank you for your attention!

Fire safety aspects during storage and handling of solid biofuels

Henry Persson, SP Safety

